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GAS-LIQUID CORRELATION OF IONIZATION ENERGIES

Paul DELAHAY and Andrew DZIEDZIC

* * Department of Chemistry, New York University, New York, New York 10003, U.S.A.

- Received

Ionization potentials of ions and molecules are correlated with the

--- a threshold energies of their aqueous solutions for photoelectron emission.

-~~ Inner- and outer-sphere remranizations are treated, respectively, in terms of

a discrete number of dipoles and a continuous medium model. Calculated and

experimental threshold energies are compared for halide and hydroxide ions and

water. The threshold and reorganization energies of the hydrated electron are

calculated from threshold energies of anions and their absorption spectra for

a" charge transfer to the solvent.

1. Introduction

The threshold energies for photoelectron emission by aqueous solutions

will be correlated (i) with gas-phase ionization energies and electron

affinities, and (ii) with absorption spectra for charge transfer to the

solvent. The first correlation will be established on the basis of a recent

treatment [1] of the free energy for inner-sphere reorganization in the

photolonization of univalent anions and molecules. Ionization energies of

clusters of water molecules in the gas phase obtained in recent £2] ab initio

SCF MO calculations will be used to estimate the liquid-phase ionization

energy of liquid water. The second correlation will be applied to the

calculation of the threshold energy of the hydrated electron.

2. Free energy of emission and gas-phase ionization

Consider the photoelectron emission by an aqueous solution of a substance

C. The change of free energy from initial to final state for the emission

process is obtained from the sequence,

eVn
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C(aq) - C(g) (1)

C(g) = C +(g) + e-(g) (2)

C+(g) - C+(aq), (3)

where (aq) and (g) denote respectively the liquid and gas phases. The change

of free energies for (1) to (3) are, respectively, -aGs(C), aGi and

AG (C+), where the AG s'S pertain to hydration and aG to ionization
S

(aGi d I, the ionization potential).

The free enerqy of emission &Gm is obtained by including the total free

energy of reorganization [3] and a term for the surface potential in the

summation of free energies. Thus,

AGm = I + AGs (C+ ) - aG s(C) + P in+ Rout + ejx, (4)
where the positive quantities Pin and Rout are respectively the inner- and

outer-sphere reorganization free energies; e is the electronic charge and

the surface potential of the solution (fexi < 0.1 eV in general [4]).

Equation (4) will be applied to anions (sec. 3) and water (sec. 4).

3. Anions

Explicit forms of Rin and Rout will be introduced in eq. (4) for

emission by aqueous solutions of univalent anions A-(aq). Thus [1],

Rin - [aGs(A-) - aG B - U(ep.) - U(PP,) - UIND + aGs(A)], (5)

where aG is the free energy for Born charging of the dielectric (solvent) in

the outer-sphere region; U(ep) and U(p p ) the energies for

charge-induced dipole and induced dipole-induced dipole interaction; UIND the

energy for induced dipole formation in the inner-sphere solvation shell.

Equation (5) is obtained [1] by noting that photoelectron emission by A-(aq)
4 r

is the opposite process of hydration of A-(g) except that the negative charge

is removed by electrons in emission and the hydrated atom or radical A(aq) is

left in solution. The term AGB and the U's are subtracted from AG (A-)
s
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-m.

in eq. (5) since Born charging is taken into account by the term Rout and

interaction with induced dipoles does not involve a change in nuclear

coordinates. A minor contribution from London dispersion considered in [1] is

omitted in (5). Negligible quadrupole-induced dipole interaction is also

omitted.

The term aG in eq. (5) will be combined with the term Rout appearing in

eq. (4). Thus,

G= -(1 - sl12a, (6)

where e is the static dielectric constant of water, and a - rc + 2rw,

rc and rw being, respectively, the crystallographic radii of A-(g) and

water (= 1.38 A). Conversely,

R 1 ( - 1)e2/2a, (7)
out = ,op s

where Cop (= 1.777 at 25"C) is the limiting value of the optical dielectric

constant of liquid water in the visible range.

:One obtains from (4) to (7) after setting I equal to the electron affinity

Ae of A(g),

AGm Ae - 2aGs(A-) + Peut + U(ep8) + U(p pa) + UIND + lelx, (8)

with

pe 1-l)e2/2a. (9)
out = - (1 aop

The quantity Pute is the free energy of electronic polarization of the

dielectric (solvent) for the outer-sphere region for a continuous medium model.d4.

Conversely, the U's in eq. (8) pertain to a discrete number of induced dipoles

in the inner-sphere region. One has [5],

2' Uep) = - Nep (rc + rw) (10)

23
U(pa) p bp /(rc + rw

3 (I

UIND - (112a)Npa, (12)

where N is the number of water molecules in the inner-sphere hydration shell of

.4..
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A-(aq); p the induced dipole of the solvent; b a structure constant

depending on N (2.296 and 7.114 for N = 4 and 6, respectively); a (- 1.444 x

10-24 cm3) the polarizability of the water molecule. The induced dipole

Pa is calculated most simply from

Pa M mel(rc + rw)2 (13)

Values of aGm from eq. (8) are listed in Table I (data from [6] to [9])

and are compared with the experimental threshold energies Et. The surface

potential was taken to be that of water (0.08*0.06 eV [4]). The contribution

from vibrational relaxation to Rin for OH- is negligible since the

interatomic distance O-H is the same within 0.002 A for OH-(g) and OH(g) [8].

Agreement is as good as one could expect in view of some uncertainty about

hydration free energies (cf. [6] vs. [9]).

Structure in the hydration shell can be taken into account on the basis of

the treatment of hydration in [5]. Thus, the radius a = rc + 2rw = rc +

2.76 A in eq. (9) is set equal to rc + 2.19 A and rc + 2.51 A for N = 4 and

6, respectively. The induced dipole pa is obtained in [5] by minimizing the

total free energy of the processes involving induced dipoles in hydration (cf.

eq. (25) in [5]). The resulting values of Put' the sum of the U's of (10)

to (12) and aGm are listed in the second row for each ion in Table 1. The

results are similar to those of row I.

The term eout in eq. (8) follows from a continuous medium model whereas

the U's of (10) to (12) are calculated for a discrete number of induced

dipoles. One may try to replace the sum of Pe and the U's in eq. (8) by
O~utanthUsine.()b

a single quantity pe calculated for a continuous medium outside the spherical

cavity of radius rc, namely

pe,_ (1 -e )e2/2rc. (14)

The values of aGm computed in this way are listed in Table 1, third row for

each ion. These results are, of course, approximate.

A~ --
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4. Water

Equation (4) is readily transposed to photoelectron emission by liquid

water. Process (1) involves the free energy of vaporization aGvap (= 0.09 eV)

of water, and eq. (4) becomes

,AGm = I + aGs(H20 ) + aGvap + Rin + Rout + letXH20,  (15)

where XH20 (= 0.08*0.06 eV [4]) is the surface potential of water. Equation

(5) for Rin now becomes

Rin = - [AGs(H 20+) - AGB - U(ep a ) - U(pOpO) - UIND - AGvap, (16)

where aGvap = -aGs(H 20). The final result,

,-=_- vap pe + t,(ep) + U(papQ) + UIND + leixH20 (17)
is similar to eq. (8), but the term -2aGs(A-) for hydration of A-(g) in the

latter is now replaced by 2aGva p for vaporization. Vibrational relaxation is

negligible since the vertical and adiabatic gas-phase ionization energies are

practically the same.

Assuming that the crystallographic radius rc of H20 is the same as r =

1.38 A for water, one computes pe - -0.76 eV from (9) Pa 0.91 debye from
"Out = 0

(13), U(ep) . -1.43 eV from (10) for N = 4, U(papo) = 0.06 eV from (11), UIND

- 0.72 eV from (12). Equation (15) yields AGm 11.47 eV for I = 12.62 eV,

aGva p - 0.09 eV and leixH20 = 0.08 eV whereas the experimental threshold

energy is 10.04*0.02 eV. Applying the method of [5] as in sec. 3, one computes

P1~e 0 .0 V

out - -0.88 eV, U(ep) - -1.17 eV, U(pp) - 0.04 eV, UIND - 0.46 eV,

aGm - 11.31 eV. This value of AGm is still too high by ca. 1.3 eV in comparison

with the experimental threshold, and the calculation of aGm is definitely less

satisfactory for water than for the ions in sec. 3. The preceding calculation

calculation of AGm of water in inadequate for the following reasons: (i) Most

importantly, the model with spherical symmetry implied by the equation used in

the calculation of aGm only provides a crude approximation for a species such

r"""

,a. , . . ,. ., , - -. ., -, . . . . , , . . . . '
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as H 0 even with the improvement of [5]. (ii) The number N = 4 of nearest

neighbors holds for ice but is higher for liquid water, namely N % 4.4 on the

average near OC [10]. (iii) Hydrogen bonding was not considered in the

derivation [1] of eq. (5) for Rin*

e
Just as was done in sec. 3, one can replace the sum of Pout and the sum

of the U's in eq. (15) by the free energy pe of eq. (14). One computes pe =

-2.?e eV and aGm M 10.6 eV. This result is to be compared with Et

10.044O.02 eV, but the treatment is very approximate. The equation for AGm

with the term pe is identical to the equation in [11,12] for photoionization

in the bulk of a condensed phase (except for the non-applicable term 2aGvap

and the contribution from the conduction band level in the liquid in [12]).

The results of recent SCF MO calculations of the ionization energies of

clusters of water molecules in the vapor phase [2] can be used to estimate the

sum U(epa) + U(papo) + UIND in eq. (17). Consider clusters consisting

of a water molecule undergoing photoionization which is surrounded by 1 to 4

water molecules. The ionization energy of these clusters is lowered by 1 to 4

p times the sum of the following energies: interaction between the ion H20

and the surrounding induced dipoles, induced dipole-induced dipole interaction,

and formation of induced dipoles to a first approximation. This sum (in eV) per

induced dipole is accordingly (12.62 - IIn/n - 1) (Table 2), that is, 0.35 eV.

Hence, one has in eq. (17), U(epa) + U(papa) + UIND w -4 x 0.35 - -1.4 eV

approximately. This energy is twice the result (-0.71 eV) obtained from eqs. (10)

to (13). Neglecting hydrogen bonding as before, one obtains from eq. (17) A m

10.6 eV (for pe 0-0.9 eV and leix D 0.08 eV). This calculation is quitePOut H -•eVad ex2 0

crude, but it yields a result closer to the experimental threshold energy

(10.040.02 eV) than eqs. (10) to (13) and the method of [5]. The ionization

energy of the cluster for n - 2, 12.62 - 0.35 X 12.3 eV, calculated from this

simple model is fairly close to the recently determined experimental value of

12.10.1 eV [13].
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5. Hydrated electron

The free energy of emission of the hydrated electron is obtained by

transposition of the cycle (1) to (3) in sec. 2. Thus,

&Gm = - AGs(e-) + R + lelxH 2, (18)

where AGs  -1.62 eV [14] is the free energy of hydration of the electron and

R is the reorganization free energy of the cavity in the liquid left upon

,-. removal of the electron. The quantity R will be computed from the correlation

between threshold energies of anions and their absorption spectra for charge

transfer to the solvent. The following relationship is derived in [15]:

aGm - AGH = aGcT - AG - R + R(D-A), (19)

where aGm is the free energy of emission for the donor (anion) D-; aGH =

4.48 eV is the free energy for 1/2H 2(g) - H+(aq) + e-(g); aGCT is the-.

free energy for the charge transfer process D-A * DA-; aG = 2.77 eV [14] is

+
the change of free energy for 1/2H2 (g) - H (aq) + e-(a); and

R(D-A) = (c- - J-I) , (20)op s -A

with

rD-A = rc + 2 rw + rv, (21)

where rc and rw are the crystallographic radii of the anion and water,

respectively, and rv = 0.91 A [16) is the radius of the void in water

associated with the hydrated electron.

One sets aGm - Et in eq. (19) for the donor anion and AGCT - Emax at

the maximum of the charge transfer absorption band [17]. Thus,

R = E max - Et + aGH - aG + R(D-A), (22)

where aGH - AG - 4.48 - 2.77 - 1.71 eV is the free energy for the process

e-(aq) - e-(g). This free energy is also equal to -AGs(e-) + leIxH20

- 1.62 + 0.08 - 1.70 eV, where the uncertainty on the surface potential is *0.06

eV. The values of AGH - AG and -&Gs(e) + leixH2O therefore are self-consistent.

-4, . . . ... ..r, ,<...-... w ; . V ..- ,- , W . . - ' ''',-. 'C v ... ' , .';:. . , .



8

Possible contribution from the vibrational relaxation energy of the radical

produced by photoionization is neglected in eq. (22).

Values of R computed from (20) to (22) and listed in Table 3 yield a mean

value of R - 1.25 eV (0.10 eV standard deviation) in reasonable agreement with

the energy of 1.48 eV from model calculations [16]. The corresponding free

energy of emission of the hydrated electron from (18) is 1.62 + 1.25 + 0.08 =

2.95 eV (0.13 eV standard deviation).

The values of R(D-A) and R in Table 3 are not very different for each

anion except ferrocyanide, and consequently one has Et - &GH = Emax - aG

to a first approximation [15]. Ferrocyanide ion is exceptional because its

size causes R(D-A) to be unusually low (0.97 eV).
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Table 1

Calculated emission free energies' of anions vs. experimental threshold

energies a)

rb) AC) _aGs(A-)d) _Pe Ue) pe aGf )  Et

(A) (eV) (eV) (eV) (eV) (eV) (eV) (eV)

Cl- 1.81 3.61 ..30 0.69 -0.55 - 9.05 (1) 9.0

0.73 -0.51 - 9.05 (II)

-1.74 8.5 (Ill)

Br- 1.95 3.36 3.14 0.67 -0.49 - 8.56 (1) 8.2

0.71 -0.43 - 8.58 (II)

-1.61 8.1 (Ill)

I- 2.1f 3.06 2.66 0.64 -0.37 - 7.45 (I) 7.4

0.67 -0.34 - 7.45 (I)

-1.46 7.0 (I1)

OH- 1.47 1.83 3.93 0.74 -0.59 - 8.44 (1) 8.6

0.86 -0.59 - 8.32 (II)

-2.14 7.6 (Il)

a)First row for each ion (I): a - rc + 2.76 A in eq. (9) and pa from eq.

(13). Second row (II): a and pa according to [5] (see text). Third row

(III): using pe from eq. (14).

b)From [6].

C)From [7) for Cl, Br, I and [8] for OH.

d)From [9].



Table I (continued)

e)EU = U(epa ) + U(papa) + U IMD. EU(I) = -1.21 + 0.06 + 0.60 (Cl-);

-1.02 + 0.02 + 0.51 (Br-); -0.80 + 0.03 + 0.40 (F); -1.26 + 0.04 + 0.63

(Or-). U(II) = -0.83 + 0.03 + 0.29 (C1-); -0.68 + 0.02 + 0.23 (Br-);

-0.55 + 0.02 + 0.19 (-); -1.08 + 0.03 + 0.46 (OH-). N = 6 for Cl-,

Br-, F and N = 4 for OH-.

f)Calculated for x - 0.08*0.06 V for water [4].

-...

?

%.'
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Table 2

Ionization enernies of clusters of water molecules

na) Ib) (12.62 - In)/(n - 1)
nn

(eV) (eV)

1 12.62 -

3 11.93 0.35

4 11.55 0.36

5 11.31 0.33

a)Number of water molecules in cluster.

b)From SCF MO calculations in [2] except for 1, 12.62 eV (experimental).

In (11.88 eV) for n - 2 not used since it is obviously too low in comparison

with In (11.93 eV) for n = 3.

L6
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Table 3

Reorqanization free energy of the hydrated electron

donor Et Emax R(DA) R

(eV) (eV) (A) (eV) (eV)

Fe(CN)4- 6.2 4.84 4.5 0.97 1.32

- 7.2 5.58 2.5 1.28 1.37

s 2- 7.3 5.76 3.5 1.10 1.27

1

F 7.4 5.48 2.16 1.36 1.15

Br- 8.2 6.23 1.95 1.41 1.15

OH- 8.6 6.63 1.47 1.54 1.28

SO?- 8.7 7.08 2.3 1.33 1.424
H2- 8.8 6.94 2.4 1.30 1.15HP4

Cf- 9.0 7.08 1.81 1.45 1.24

HP02-  9.2 7.31 2.4 1.30 1.12
?4

a)Fro [17].

-I
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